carma_core#

Overview#

Classes#

CARMAProcess

Base class for inference with Continuous autoregressive moving average processes

Classes#

class pioran.carma.carma_core.CARMAProcess(p: int, q: int, observation_indexes: jax.Array, observation_values: jax.Array, observation_errors=None, **kwargs)[source]#

Bases: equinox.Module

Base class for inference with Continuous autoregressive moving average processes

Parameters:
pint

Order of the AR polynomial.

qint

Order of the MA polynomial.

observation_indexesjax.Array

Indexes of the observations.

observation_valuesjax.Array

Values of the observations.

observation_errorsjax.Array

Errors of the observations, if None, the errors are set to sqrt(eps).

kwargsdict

Additional arguments to pass to the CARMA model. AR_quad : jax.Array Quadratic coefficients of the AR polynomial. beta : jax.Array Coefficients of the MA polynomial. use_beta : bool If True, uses the beta coefficients otherwise uses the quadratic coefficients of the MA polynomial. scale_errors : bool If True, scales the errors by a factor nu. estimate_mean : bool If True, estimates the mean of the process.

Attributes:
pint

Order of the AR polynomial.

qint

Order of the MA polynomial.

observation_indexesjax.Array

Indexes of the observations.

observation_valuesjax.Array

Values of the observations.

observation_errorsjax.Array

Errors of the observations, if None, the errors are set to sqrt(eps).

prediction_indexesjax.Array

Indexes of the predictions.

modelCARMA_model

CARMA model.

kalmanKalmanFilter

Kalman filter associated to the CARMA model.

use_betabool

If True, uses the beta coefficients otherwise uses the quadratic coefficients of the MA polynomial.

scale_errorsbool

If True, scales the errors by a factor nu.

estimate_meanbool

If True, estimates the mean of the process.

nb_prediction_pointsint

Number of prediction points.

Overview

Attributes#

p

-

q

-

observation_indexes

-

observation_values

-

observation_errors

-

prediction_indexes

-

model

-

kalman

-

use_beta

-

estimate_mean

-

scale_errors

-

nb_prediction_points

-

Methods#

compute_predictive_distribution(**kwargs)

-

compute_log_marginal_likelihood()

-

wrapper_log_marginal_likelihood(params)

Wrapper to compute the log marginal likelihood in function of the (hyper)parameters.

__str__()

String representation of the CARMA object.

__repr__()

Return repr(self).

Members

p: int[source]#
q: int[source]#
observation_indexes: jax.Array[source]#
observation_values: jax.Array[source]#
observation_errors: jax.Array[source]#
prediction_indexes: jax.Array[source]#
model: pioran.carma.carma_model.CARMA_model[source]#
kalman: pioran.carma.kalman.KalmanFilter[source]#
use_beta: bool[source]#
estimate_mean: bool[source]#
scale_errors: bool[source]#
nb_prediction_points: int[source]#
compute_predictive_distribution(**kwargs)[source]#
compute_log_marginal_likelihood() float[source]#
wrapper_log_marginal_likelihood(params) float[source]#

Wrapper to compute the log marginal likelihood in function of the (hyper)parameters.

Parameters:
parameters: array of shape (n)

(Hyper)parameters of the process.

Returns:
float

Log marginal likelihood of the CARMA process.

__str__() str[source]#

String representation of the CARMA object.

Returns:
str

String representation of the CARMA object.

__repr__() str[source]#

Return repr(self).