carma_core#
Overview#
Base class for inference with Continuous autoregressive moving average processes |
Classes#
- class pioran.carma.carma_core.CARMAProcess(p: int, q: int, observation_indexes: jax.Array, observation_values: jax.Array, observation_errors=None, **kwargs)[source]#
Bases:
equinox.Module
Base class for inference with Continuous autoregressive moving average processes
- Parameters:
- p
int
Order of the AR polynomial.
- q
int
Order of the MA polynomial.
- observation_indexes
jax.Array
Indexes of the observations.
- observation_values
jax.Array
Values of the observations.
- observation_errors
jax.Array
Errors of the observations, if None, the errors are set to sqrt(eps).
- kwargs
dict
Additional arguments to pass to the CARMA model. AR_quad :
jax.Array
Quadratic coefficients of the AR polynomial. beta :jax.Array
Coefficients of the MA polynomial. use_beta :bool
If True, uses the beta coefficients otherwise uses the quadratic coefficients of the MA polynomial. scale_errors :bool
If True, scales the errors by a factor nu. estimate_mean :bool
If True, estimates the mean of the process.
- p
- Attributes:
- p
int
Order of the AR polynomial.
- q
int
Order of the MA polynomial.
- observation_indexes
jax.Array
Indexes of the observations.
- observation_values
jax.Array
Values of the observations.
- observation_errors
jax.Array
Errors of the observations, if None, the errors are set to sqrt(eps).
- prediction_indexes
jax.Array
Indexes of the predictions.
- model
CARMA_model
CARMA model.
- kalman
KalmanFilter
Kalman filter associated to the CARMA model.
- use_beta
bool
If True, uses the beta coefficients otherwise uses the quadratic coefficients of the MA polynomial.
- scale_errors
bool
If True, scales the errors by a factor nu.
- estimate_mean
bool
If True, estimates the mean of the process.
- nb_prediction_points
int
Number of prediction points.
- p
Overview
Attributes# -
-
-
-
-
-
-
-
-
-
-
-
Methods# compute_predictive_distribution
(**kwargs)-
-
wrapper_log_marginal_likelihood
(params)Wrapper to compute the log marginal likelihood in function of the (hyper)parameters.
__str__
()String representation of the CARMA object.
__repr__
()Return repr(self).
Members
- wrapper_log_marginal_likelihood(params) float [source]#
Wrapper to compute the log marginal likelihood in function of the (hyper)parameters.
- Parameters:
- parameters: array of shape (n)
(Hyper)parameters of the process.
- Returns:
- float
Log marginal likelihood of the CARMA process.